Energetics of cooperative binding of oligonucleotides with discrete dimerization domains to DNA by triple helix formation.
نویسندگان
چکیده
Cooperativity in oligonucleotide-directed sequence-specific recognition of DNA by triple helix formation can be enhanced by the addition of discrete dimerization domains. The equilibrium association constants for cooperative binding of oligonucleotides that dimerize by Watson-Crick hydrogen bonds and occupy adjacent sites on double helical DNA by triple helix formation have been measured by quantitative affinity cleavage titration. For two oligonucleotides that bind unique neighboring 11-bp and 15-bp sites on double helical DNA, and dimerize by formation of an 8-bp Watson-Crick mini-helix, the free energy of binding is -8.0 and -9.7 kcal.mol-1, respectively, and the cooperative energy of interaction is -2.3 kcal.mol-1 (1 kcal = 4.18 kJ). The energetics of this artificial nucleic acid cooperative intermolecular assembly can mimic naturally occurring cooperative protein-DNA systems, such as the phage lambda repressor.
منابع مشابه
DNA-mediated assembly of weakly interacting DNA-binding protein subunits: in vitro recruitment of phage 434 repressor and yeast GCN4 DNA-binding domains.
The specificity of DNA-mediated protein assembly was studied in two in vitro systems, based on (i) the DNA-binding domain of bacteriophage 434 repressor cI (amino acid residues 1-69), or (ii) the DNA-binding domain of the yeast transcription factor GCN4, (amino acids 1-34) and their respective oligonucleotide cognates. In vivo, both of these peptides are part of larger protein molecules that al...
متن کاملBinding of DNA oligonucleotides to sequences in the promoter of the human bc1-2 gene.
Duplex DNA recognition by oligonucleotide-directed triple helix formation is being explored as a highly specific approach to artificial gene repression. We have identified two potential triplex target sequences in the promoter of the human bcl-2 gene, whose product inhibits apoptosis. Oligonucleotides designed to bind these target sequences were tested for their binding affinities and specifici...
متن کاملPadlock oligonucleotides for duplex DNA based on sequence-specific triple helix formation.
An oligonucleotide was circularized around double-stranded DNA thanks to triple helix formation. Short oligonucleotides are known to be able to form DNA triple helices by binding into the DNA major groove at an oligopurine.oligopyrimidine sequence. After sequence-specific recognition of a double-stranded DNA target through triple helix formation, the ends of the triplex-forming oligonucleotide ...
متن کاملDNA recognition by alternate strand triple helix formation: affinities of oligonucleotides for a site in the human p53 gene.
Duplex DNA recognition by oligonucleotide-directed triple helix formation is generally limited to homopurine target domains. Various approaches have been suggested for the relief of this constraint. Artificial DNA sequences have previously been used to show that adjacent homopurine domains on opposite DNA strands can be simultaneously recognized by oligonucleotide probes that switch triple heli...
متن کاملExclusion of RNA strands from a purine motif triple helix.
Research concerning oligonucleotide-directed triple helix formation has mainly focused on the binding of DNA oligonucleotides to duplex DNA. The participation of RNA strands in triple helices is also of interest. For the pyrimidine motif (pyrimidine.purine.pyrimidine triplets), systematic substitution of RNA for DNA in one, two, or all three triplex strands has previously been reported. For the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 4 شماره
صفحات -
تاریخ انتشار 1993